July 24, 2006

Mr. Paul Lorek XXX Corp Hornell, NY 14843

Dear Paul:

Following your e-mail of June 27, 2006, AU-MTS Lab has conducted fatigue tests for steel of ID #22 and #34 parts of your company. One is a material which does not confirm its specification, the other is the reference steel. These steel materials were shipped to our lab on July 3 by IMR Test Labs with a shape shown in photo 1. Four kinds of samples with each of 5 pieces were fabricated by the machining shop at Alfred University. Two kinds are smooth specimens of #22 and #34 following the design in Attachment 1 with the specimen length of 128.5 mm. The other two are similar specimens of #22 and #34 but with notches as shown in Attachment 2. Under your permission, the notch radius shown in Attachment 2 was changed from R0.01 to 0.02 inch.

The fatigue tests were conducted in sophisticated servo hydraulic materials testing system of MTS 809.10 (photo 2) and Instron Model 1331 (photo 3) with stress control under tension-compression symmetric loading (R=-1). Testing frequency is 2 Hz for low and middle cycle fatigue and 5 Hz for high cycle fatigue. In all the cases, the frequencies are the same for both #22 and #34 samples under the same applied stress. The ID number, geometric parameters, applied stress magnitude and the obtained fatigue life for each specimen are listed in Table 1-4. The corresponding four S-N curves are shown, respectively, in Figures 3, 4, 6 and 7. The comparisons of S-N curves of smooth and notched specimens between #22 and #34 are shown, respectively, in Figure 5 and 8.

If you have any question please send me a e-mail at <u>fanjing@Alfred.edu;</u>

Thanks,

Jinghong Fan Professor

TABLE OF CONTENTS

A letter t	to Mr. Paul Lorek of XXX Corp.	0
Photo 1:	Overlook of XXX Corporation's Steel Parts ID #22 & #34 and a Fabrica Fatigue Testing Specimen	
Photo 2:	AU-MTS Lab's 809.10 Sophisticated Servo Hydraulic Materials Testing S	System4
Photo 3:	AU-MTS Lab's Instron-1331 Sophisticated Servo Hydraulic Materials Telescope Measurement Facility, and Nitrogen Tank for Fatigue Testi Temperature below 0 ⁰ C	ng with
Table 1:	ID #22 Steel Fatigue Data of Smooth Samples (R=-1)	6
Table 2:	ID #34 Steel Fatigue Data of Smooth Samples (R=-1)	6
Table 3:	ID #22 Steel Fatigue Data of Notched Samples (R=-1)	7
Table 4:	ID #34 Steel Fatigue Data of Notched Samples (R=-1)	7
Figure 1	: S-N Curve of Smooth Samples for #22 Steel	8
Figure 2	: S-N Curve of Smooth Samples for #34 Steel	9
Figure 3	: A Comparison of S-N Curves between #22 and #34 Steel Smooth Specin	ens10
Figure 4	: S-N Curve of Notched Samples for #22 Steel	11
Figure 5	: S-N Curve of Notched Samples for #34 Steel	12
Figure 6	: A Comparison of S-N Curves between #22 and #34 Steel Notched Specir	nens13
Attachm	ent 1: Drawing of smooth specimen	14
Attachm	nent 2: Drawing of Notched specimen	14

Photo 1: Overlook of XXX Corporation's steel parts of ID #22 and #34 and a fabricated fatigue testing specimen

Photo 2: AU-MTS Lab's 809.10 sophisticated servo hydraulic materials testing system

Photo 3: AU-MTS Lab's Instron-1331 sophisticated servo hydraulic materials testing system, its telescope measurement facility, and Nitrogen tank for fatigue testing with temperature below 0^{0} C

SID	D (mm)	A (mm²)	σ (MPa)	P _{max} (kN)	P _{min} (kN)	N _f
22#-6	5.66	25.1479	280	7.0414	-7 .0414	1819809
22#-5	5.62	24.7938	300	7.4381	-7 .4381	869514
22#-3	5.686	25.3795	330	8.3752	-8.3752	264283
22#-2	5.61	24.7056	360	8.894	-8 .894	109382
22#-4	5.68	25.326	385	9.7505	-9.7505	30224

 Table 1: #22 Steel Fatigue Data of Smooth Samples (R=-1)

 Table 2: #34 Steel Fatigue Data of Smooth Samples (R=-1)

SID	D (mm)	A (mm²)	σ (MPa)	P _{max} (kN)	P _{min} (kN)	N _f
34#-6	5.7	25.5047	280	7.1413	-7 .1413	1748409
34#-2	5.613	24.732	300	7.419	-7 .419	499182
34#-4	5.68	25.326	330	8.3576	-8.3576	124113
34#-3	5.686	25.3795	360	9.1366	-9.1366	57012
34#-5	5.66	25.1479	385	9.6819	-9.6819	28741

SID	D (mm)	A (mm²)	σ (MPa)	P _{max} (kN)	P _{min} (kN)	N _f
22#-7	5.65	25.0592	330	8 2695	-8 .2695	3993
22#12	5.54	24.0929	260	6 2642	-6.2642	14278
22#-8	5.63	24.8821	230	5.7229	-5 .7229	50631
22#-11	5.54	24.0929	210	5 .0595	-5 .0595	57350
22#-9	5.6	24.6176	200	4 .9235	-4 .9235	125056

 Table 3: #22 Steel Fatigue Data of Notched Samples (R=-1)

 Table 4: #34 Steel Fatigue Data of Notched Samples (R=-1)

SID	D (mm)	A (mm²)	σ (MPa)	P _{max} (kN)	P _{min} (kN)	N _f
34#-8	5.54	24.0929	330	7 .9507	-7 .9507	5245
34#12	5.54	24.0929	260	6.2642	-6.0642	18664
34#-9	5.54	24.0929	230	5.5414	-5.5414	29479
34#-11	5.54	24.0929	210	5.0595	-5.0595	59561
34#-10	5.62	24.7938	200	4 .9588	-4 .9588	121118

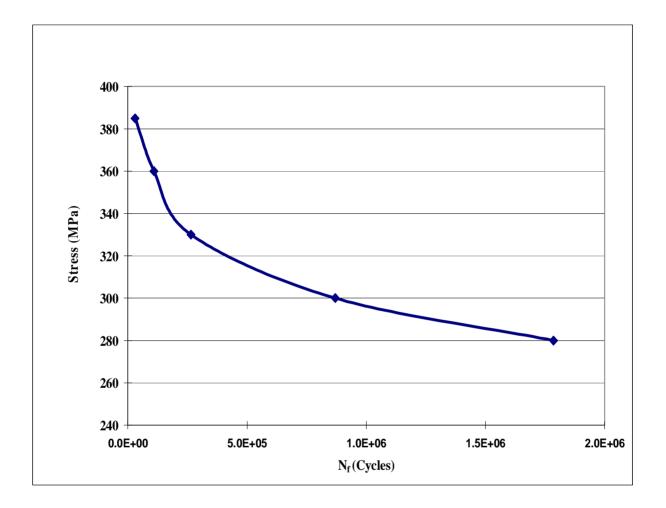


Figure 1: S-N Curve of Smooth Samples for #22 Steel

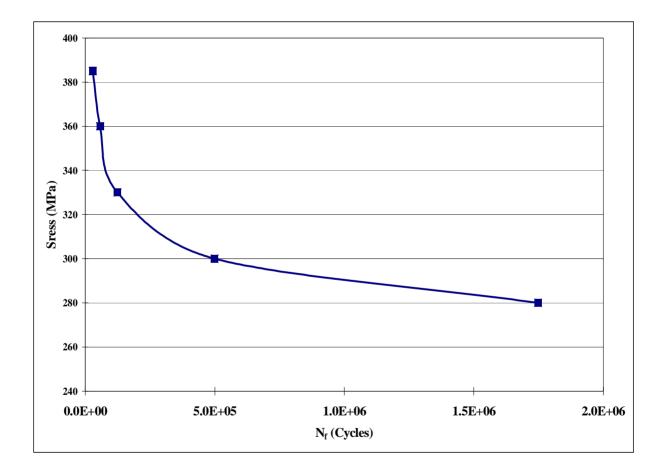


Figure 2: S-N Curve of Smooth Samples for #34 Steel

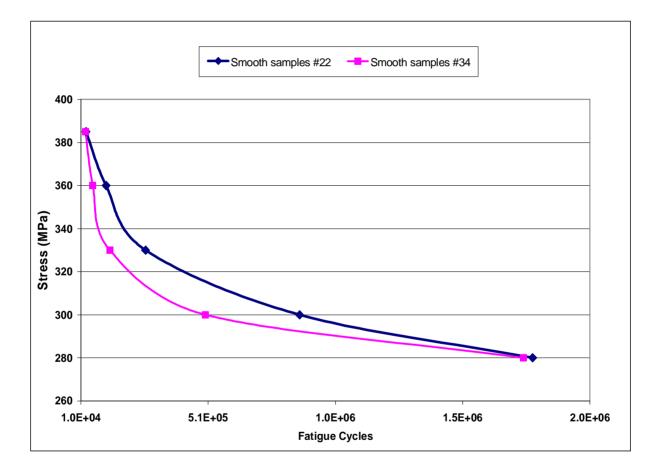


Figure 3: A Comparison of S-N Curves between #22 and #34 Steel Smooth Specimens

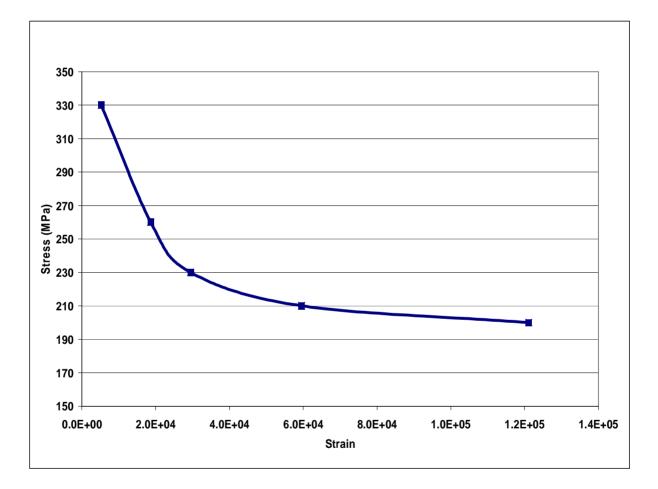


Figure 4: S-N Curve of Notched Samples for #34 Steel

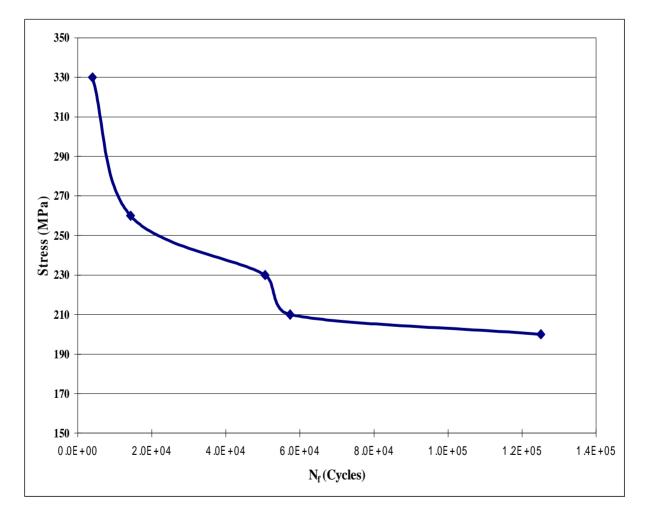
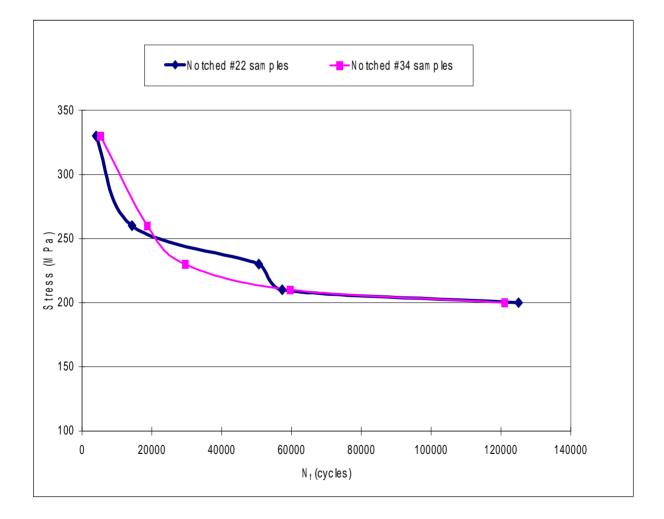
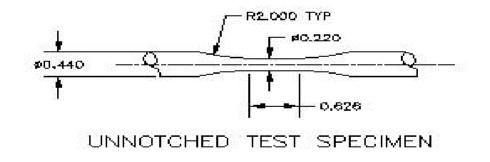
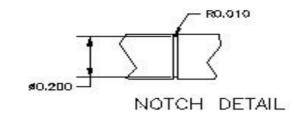
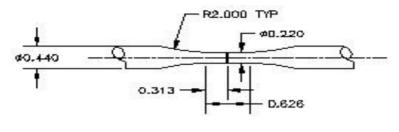


Figure 5: S-N Curve of Notched Samples for #34 Steel


Figure 6: A Comparison of S-N Curve of Notched Steel Sample #22 & #34


Attachment

(1) Drawing of smooth specimen

(2) Drawing of notched specimen

NOTCHED TEST SPECIMEN